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We calculate  the specif ic  lift which must  be exper ienced by a spher ica l  pa r t i c le  with density 
different f r o m  that of the fluid, in a flow with fluctuating shea r .  

A solid par t ic le  in a shear  flow (i.e., when the longitudinal veloci ty  has a t r a n s v e r s e  gradient) moves  
with the fluid and at the s ame  t ime  ro ta tes ;  in turn  its rotat ion gives r i s e  to a definite per tu rba t ion  of the 
flow about the pa r t i c l e .  The  interact ion between the rotat ion of the par t ic le  and the fluid surrounding it, 
and the fundamental  flow can give r i s e ,  as many observa t ions  [1-3] show, to a t r a n s v e r s e  motion of the p a r -  
t ic le  so that its t r a j e c t o r y  deviates  f r o m  the s t r eaml ine  of the unper turbed flow. 

This  effect depends on a whole s e r i e s  of f ac to r s  - the shape and deformabi l i ty  of the pa r t i c le ,  the 
veloci ty  prof i le  of the unper turbed flow, whether  or not the flow is s teady,  the wall  effect ,  e tc .  The number  
of different combinations of these  fac to r s  is ex t r eme ly  great ;  hence in the l i t e ra tu re  only a l imited number  
of different cases  is d iscussed  or studied exper imenta l ly .  

Thus ,  the effect of the t r a n s v e r s e  d i sp lacement  of r igid spher ica l  pa r t i c l e s  in the flow of a non-New- 
tonian fluid was d iscussed  in [4], while that of deformable  pa r t i c l e s  in a Newtonian fluid was cons idered  in 
E5]. 

Even if we r e s t r i c t  ou r se lves  to the cons idera t ion  of only r igid spher ica l  pa r t i c l e s  in a Newtonian 
fluid, there  a re  many combinat ions of the different f ac to r s ,  each of which must  be cons idered  separa te ly ;  
f i r s t  we have to dist inguish the cases  when the resu l tan t  fo rce  F and moment  M on the par t i c le  f r o m  the 
fluid a r e  ze ro  or  nonzero .  Analysis  of exper imenta l  r e su l t s  shows that we also have to take into account 
the Reynolds number  for  the re la t ive  motion of the pa r t i c l e ,  defined as Rep - Va /v ,  and the re la t ive  dis tance 
f r o m  the wall  y / a .  

Theore t i ca l  calculat ions were  made in [6] of the drag,  l ift ,  and moment  of the fo rces  on a spher ica l  
pa r t i c l e  for  Rep << 1; this is the case ,  when F, M ~ 0, y / a  ~ .  An approx imate  solution was obtained by 
r ep resen t ing  the veloci ty  and p r e s s u r e  f ields as s e r i e s  in powers  of Rep, re ta ining only t e r m s  in (Rep) ~ 
and (Rep) 1. The solution was cons t ruc ted  sepa ra t e ly  for  the region near  the sur face  of the sphere  {in the 
va r i ab les  x i / a  ) and for  the region x i / a  >> 1 (in the va r i ab l e s  Xi--- Rep(xi/a))  with subsequent matching of 
the asymptot ic  express ions  for  both regions .  Fo r  the lift on a sphere  moving with t rans la t iona l  veloci ty  V" 
and rotat ing with angular  veloci ty  ~ with r e spec t  to the fluid an express ion  of the f o r m  

PL = cL 0f a3 [ 6  • 7 ] ,  (1) 

was obtained where  C L ~ 7r. 

Although (1) was obtained for  the rotat ion of a sphere  in an unbounded quiescent  fluid and M ~ 0, the 
authors of [6] a s sume  that it can be applied to the case  of the rota t ion of a pa r t i c le  in a shear  flow with 
equi l ibr ium (i.e., when M = 0) veloci ty  ~p. 

An approximate  solution was obtained in [7] for  the lift on a f ree ly  rota t ing (M = 0) sphere  in a flow 
with l inear  veloci ty  prof i le  (Kutta flow); in this case  also an expansion in a s e r i e s  in powers  of ( i /v)  was 
used,  re ta ining t e r m s  of ze ro  o rde r  and of the f i r s t  power:  
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eL = 81,2 pf ~ (,/1)~/~ [ 7  • ~-~], (2) 

where  V is the ve loc i ty  of the sphere  with r e spec t  to the fluid (on a s t r eaml ine  pass ing  through the center  
of the sphere) ;  j = k .dUx/dY is the s hea r .  

Although the approx imate  method used in [7] can give r i s e  to object ions,  s imple  exper imen t s  conform 
to an equation of the f o r m  (1). Thus ,  in [1] (M # 0, F = 0) it was found that C L ~ 18 for  a = 0.075 cm,  Rep 
= 0.08 and y /a  > 4. The  rota t ional  ve loci ty  of the pa r t i c l e  was measu red  d i rec t ly  and was equal to the theo-  
re t i ca l  value (for c reep ing  flows) 

Qp = 1/2 dUJdg. 

The lift for  the ease  M = 0 was also measu red  in [8], but the data a re  for  l a rge  Rep and smal l  re la t ive  
d is tances  f r o m  the wall .  

A weak t r a n s v e r s e  d isp lacement  of solid spher i ca l  pa r t i c l e s  was also detected for  the case  F, M = 0 
[9]. Evidently this effect depends on the cu rva tu re  of the veloci ty  prof i le ,  d~Ux/dy 2 [10]. 

Unsteadiness  of the fluid flow can a lso  lead to the appearance  of t r a n s v e r s e  fo rces  on the pa r t i c l e .  
Below we consider  the mot ion of a solid spher ica l  pa r t i c l e  in a fluctuating Kutta flow. Such a flow is an 
approx imate  model of the v iscous  sub layer  of a turbulent  flow where  the shear  s t r e s s  f luctuations r each  
30% of the ave rage  [11]. In these  cases  a solid pa r t i c l e  with pp # pf exper iences  t rans la t iona l  and rotat ional  
osc i l l a to ry  motions shifted in phase  with r e spec t  to these  motions of the fluid; s imul taneous  t rans la t iona l  
and rota t ional  motion of the pa r t i c l e  with r e spec t  to the fluid leads to the appearance  of lift .  

To calcula te  this effect  (see below) we a s s u m e  that the Reynolds number  for  the re la t ive  motion is 
smal l  so that ,  as  shown in [6], the fo rce  and moment  of the fo rces  on the par t i c le  can be calculated f r o m  
the cor responding  equations for  c reep ing  flow. 

The unper tu rbed  flow of the fluid in the d i rec t ion of the x -ax i s  is descr ibed  by the equation 

Uf = uf sin(or + ]o(g--go) Sino)t. (3) 

Then the solid pa r t i c l e  a lso  osc i l la tes  in t rans la t ion ,  but shifted in phase  

Up=  up sin ((or + %), (4) 

the ampli tude and phase  shift  ~1 being given by the following equations= 

Up ( 1 + [3 ~ '~1/2 i = m I - - - - v §  ' (5) 
uf \ 1 + ~ 7 ~ ]  2 7 - - 1  

_ ~ V - - 1 - ~ - - 1 ~ ( 7 - - 1 ) ,  (6) 
tg% -- - -  ~2 V + 1 

where  

-=s 2 a%~pf a n d ? ~  PP 
9 9 pf 

and the approx imate  equali ty is val id for  a sma l l  phase  shif t .  As the spher ica l  pa r t i c l e  ro t a t e s  in the un-  
bounded fluid the moment  of the fo r ce s  on the pa r t i c l e  is 

M = 8ax~a ~ (~f - -  ~p). (7) 

For  a shea r  flow it is a s sumed  that 

M = - -  8axiua a ( ~ p -  f~e), (8) 

where  ae  is the equi l ibr ium veloc i ty  of ro ta t ion  of the solid pa r t i c l e  in a flow with shear  j ,  where  ae  = j /2  
[1]. Then for  the rotat ional  osci l la t ions  of the pa r t i c l e  due to the shea r  f luctuations j0s inwt  we can der ive  
ampli tude andphase  equations s i m i l a r  to (5)and (6): 

t g % ~ - -  1 a"COpp= 3 ~%. (9) 
15 bt 10 

Then,  by (1), and a f te r  t i m e - a v e r a g i n g  (for smal l  phase  shif ts ,  i .e . , f l  << 1) 

1039 



7 CL a3p f 
FL ,~ - -  ]oUf y (y -- 1)[~ ~, (10) 

40 

FL 21 CL ]oUf y[~2. (11) 
Ps 160 ~ g 

Estimates of the values shows that for sufficiently large particles (a ~ 30-40 ~) at high frequency 
(co ~ 103 sec -t) and with J0 ~ 10~ sec-1, uf "~ 15 cm/sec (which corresponds to conditions at the outer bound- 
ary of the viscous sublayer when V. ~ 6 cm/sec) the lift may exceed the weight of the particle many times, 
i.e., give rise to suspension of the dispersed phase. 
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NOT AT ION 

are the force and moment of the drag forces; 
is the lift; 
are the translational and rotational velocity of the particle with respect to the fluid; 
is the absolute velocity; 
are the absolute angular velocity of the particle and of the fluid; 
are the particle and fluid densities; 
ts the dynamic viscosity; 
is 
is 
is 
is 
is 
1s 
is 

the shear; 
the radius of solid particle; 
the distance of the center of the particle from the solid wall; 
the frequency of fluctuations; 
the dynamic velocity {friction velocity); 
the Reynolds number for the relative velocity and radius of the particle; 
the acceleration due to gravity. 
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